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The aim of the paper is to examine the nonlinear dynamics of a truncated system 
modelling low-Prandtl-number thermal convection. The model describes situations 
where the primary flow is not a straight roll and the dynamics is dominated by the 
production of axial flow along the axis of bent rolls or of swirl along ring vortices. The 
physical mechanism for these processes is a spontaneous growth (i.e. bifurcation) of 
a vertical vorticity mode, breaking the two-dimensional symmetry of the system. A 
description of the model can be found in Massaguer & Mercader (1988) where the 
physics and the numerical results have been checked against laboratory experiments. 
The nonlinear dynamics of that model will be discussed in the more academic case 
of free boundaries, as it has been shown that for sufficiently small Prandtl numbers 
straight rolls cannot be expected to be the primary flow near the onset of convection 
(Busse & Bolton 1984). Two clearly differentiated time-dependent regimes have been 
found and they correspond to small and intermediate PBclet numbers. In the former 
regime there exists a transition to chaos with the whole scenario being dependent on 
a symmetry invariance common to a large number of confined flows. The route to 
chaos is made up of a sequence of homoclinic explosions giving rise to a cascade of 
period doublings, with the whole scenario being different from that of a Feigenbaum’s 
cascade. 

1. Introduction 
Thermal convection in low-Prandtl-number fluids, such as liquid metals or 

astrophysical plasmas, is still a poorly understood phenomenon. Difficulties involved 
in conducting clean and controlled laboratory experiments together with require- 
ments of high resolution for numerical simulations make progress very slow, in spite 
of the relevance of the subject. We have chosen to view these flows as being almost 
inviscid, with their dynamics being dominated by shear-type instabilities and we 
have concentrated on the growth and subsequent dynamics of a vertical vorticity 
component as being the most relevant process. 

The purpose of the present paper is to examine thermal convection for Prandtl 
numbers (T small enough to display some signature of the limit cr < 1. There are in 
fact two such limits. The first one is a regular limit and we shall call it  the zero- 
Prandtl-number limit for obvious reasons, though its existence is bounded to mild 
supercritical regimes. The second limit seems to be a singular one. Besides their 
academic interest, the existence of such limits and the knowledge of their dynamics 
is a major question in astrophysical fluid dynamics where fluids are almost inviscid 
and largely conducting. 
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As discussed elsewhere (Massaguer & Mercader 1984, 1988) vertical vorticity can 
be produced in several contexts. First, in finite containers, where the existence of a 
non-zero vertical vorticity component can be a requirement to fulfil boundary 
conditions. Secondly, in flows not displaying two-dimensional geometry, as in such 
cases the growth of a non-zero vertical vorticity component is a dynamic requirement 
from the Navier-Stokes equation, though often of little relevance. In some cases that 
component can even be artificially killed without any dramatic change in the 
dynamics, as shown, for instance, by the so-called amplitude equations (Newel1 & 
Whitehead 1969). The reason is that in this context the vertical vorticity component 
is a slave mode, in the sense that it is a damped mode externally forced by the main 
field (see Haken 1983 for a discussion on slave modes). As mentioned before, its 
feedback can often be neglected, so vertical vorticity does not play any role. The best 
known exception comes from the oscillatory instability, where short-cutting the 
feedback kills the instability (Zippelius & Siggia 1982; Siggia & Zippelius 1983). 

Elsewhere we have called such instabilities shape instabilities, for they are 
geometrical requirements of the main field. To be precise, in these instabilities the 
growth of vertical vorticity does not break the symmetry of the system, yet the 
symmetry must be broken before it can grow (the source term is a Jacobian and is 
zero for any two-dimensional flow). There still exists an additional source of 
instability for the vertical vorticity. It is a shear instability, which we have called 
instability of swirl as it grows as an azimuthal component in toroidal flows, with the 
result that it fundamentally breaks the symmetry of the primary flow. 

The instability of swirl is an instability that cannot be triggered unless the primary 
flow is a bent roll or a torus, as could be the case for convection in small-aspect-ratio 
boxes. It is an instability well known in vorticity dynamics where it appears in bent 
filaments as an axial flow or in ring vortices as a swirl. The agreement of some results 
in Massaguer & Mercader (1988, hereafter called Paper I) with experiments in large- 
aspect-ratio boxes suggests that such an instability might be active also if 
conveniently coupled with the oscillatory instability, where the rolls are bent 
dynamically by a wavy motion like a vibrating string, before the instability of swirl 
could be triggered. That instability must be particularly active in the case of free 
boundary conditions where no stable, steady convection flow is possible near the 
onset of convection (Busse & Bolton 1984; Bolton & Busse 1985). 

To the best of our knowledge, the first indication of a spontaneous growth of a 
permanent vertical vorticity component was reported by Graham (1977) in a 
pioneering work on three-dimensional numerical simulation of thermal convection in 
a compressible fluid. He found a time-dependent, but persistent, component that can 
hardly be associated with any shape instability. The relevance of such a result has 
been magnified by the very recent discovery of persistent spots of vertical vorticity 
in the solar photosphere (Brandt et al. 1988 ; Toomre 1988), which might be taken as 
an indication of high activity in terms of vertical vorticity dynamics deep in the 
convection zone. 

To describe the flow the same model is used as in Paper I, though now we 
concentrate on the case of free boundaries. The model is a highly truncated modal 
expansion in which, in order to deal with shear-type instabilities, a vertical vorticity 
component is still present. The model was shown to be quite reasonable for modelling 
thermal convection in mercury, Q = 0.025, a t  mildly supercritical values as computed 
frequencies and fluxes were well within the range of the experimental measurements. 
Obviously, this is not a good enough basis for trusting its detailed dynamics, but it 
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does provide a basis for some confidence in the relevant balances and scalings, even 
for the time-dependent problem. 

Most of the scenario to be shown is induced by the skew-symmetry of the velocity 
and temperature fields about the midplane 

{VZ, vy,  v,, T )  + cv,, Vy, -212, - T), 

{x, Y, + @+XO, Y +YO, -4,  
with the origins for the temperature T and the x-coordinate taken in the middle of 
the convection layer. As usual v is the velocity field, and {zo, yo} are constant space 
shifts. That symmetry is a rather general property fulfilled for most flows confined 
in finite (x0 = yo = 0) or periodic boxes (see, for instance, Knobloch et al. 1986). In  
that respect the reader must be aware that for planar flows xo and yo have to  be 
different from zero in order to prevent that symmetry from becoming an identity, 
but that  is not the case for other flows, in particular for three-dimensional ones. 
Therefore, the scenario to be described can exist even for finite containers. 

There is also a second symmetry invariance of a very general nature. It is a reversal 
in vertical vorticity that we can write as 

{ v z , v y , v , , ~ + { v z ,  - v y , v 2 > T ) ,  

{ ~ , Y , z ) + { ~ + ~ o ,  - Y - Y o 7 4 ,  

with both x- and y-coordinates being exchangeable. That symmetry is still present 
in our truncated model but we have not found any particular scenario related to that 
symmetry in the range of variables explored. 

A system invariant against symmetries, say invariant against a finite symmetry 
group to be precise, can be suspected to be a candidate to  display global instabilities. 
If it is invariant against a finite symmetry group every asymmetric solution is 
replicated as many times as there are elements in the group. If these asymmetric 
solutions are time dependent and their basins of attraction come close enough, we 
can expect reconnections, mergings and, working backwards, splittings. There are at 
least two well-known examples of transition to chaos in fluids where such symmetry 
invariances play an important role : the Lorenz model (Sparrow 1982 ; Guckenheimer 
& Holmes 1983) and thermohaline convection (Knobloch et al. 1986). The existence 
of one such scenario for the Ginzburg-Landau equation is also worth mentioning 
(Kuramoto & Koga 1982) because of its profound relationship to fluid dynamic 
problems. 

The number of known routes to chaos is very limited and most of them concern 
sequences of local instabilities in periodic solutions (Eckmann 1981). They are, 
certainly, easier to  classify than global instabilities, for they simply concern the 
evolution of a few eigenvalues in parameter space, not the whole topological 
structure of the vector field. Nevertheless, global instabilities are as physical as local 
instabilities, at least in finite containers where finite symmetries are usually present. 
So, any realistic physical model displaying global instabilities is welcome. 

The present paper concentrates, mostly, on the dynamics of the nonlinear, time- 
dependent model described in Paper I. In  $2 we review the main properties of the 
model. The structure and stability of the steady solutions is discussed in $3, where 
a zero-Prandtl-number model is presented, and the time dependence is examined in 
$4. Finally, in $5  we advance some conclusions concerning the physical and 
mathematical relevance of the model. 
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2. Description of the mathematical model 
The present paper concerns low-Prandtl-number thermal convection in a plane- 

parallel domain, horizontally periodic, bounded by two horizontal plates and filled 
with a Boussinesq fluid. The model used has been extensively described in Paper I 
and only a brief summary of it will be provided here. The velocity field is expressed 
in terms of two scalar potentials associated with the vertical components of the 
velocity u, and vorticity w,. Both of them, together with the temperature T ,  are the 
whole set of variables needed to describe the problem. In the present model we 
assume for these variables the following shape assumption : 

where f(x, y) is an eigenfunction of the horizontal Laplacian operator V; f = -azf with 
zero horizontal average. The horizontal components of the velocity field can be 
written as 

21, = a-"a,fa, w+a,ft;), 
Wy = a-2(ayfa, w-a,g). 

(c-1 a, - v2) v2w = - ~ a 2 e -  ca-ywa, v w +  2 a, W V ~ W +  36 a, 0, 
With such an expansion, the Navier-Stokes and the heat equations take the form 

( 2 . 2 4  

( a , - v ) o  = - w a , ~ - c ( 2 w a , o + e a , w ) ,  (2.2c) 

(a,-a;,) T = -a,(we), (2.24 

(c-l a, -v2) = - cu-ywaZ 6-6 a, w), (2.2b) 

where V2 = a:z-a2, R is the Rayleigh number, u is the Prandtl number and C is a 
constant associated with the planform f(x, y). The computations have been carried out 
with C = l/d6. Also, unless otherwise stated, i t  will be assumed that a = 2.22, which 
corresponds to the critical value for the linear problem. At the boundaries the so- 
called free boundary conditions will be assumed for velocity : zero vertical velocity 
and no tangential stresses, and for the temperature perfectly conducting plates : 

( 2 . 3 ~ )  w = a;, w = a,c = e = 0 (2 = - +$), 

T =  T t (2 = +H). 1 

The Nusselt number, defined as 
N = -az T+ we, 

(2.3b) 

(2.4) 

will be evaluated a t  the top boundary, whenever not constant, and the Reynolds 
number 

will be evaluated in the centre of the layer. As a measure of the departure from pure 
poloidal flow we shall introduce the helicity, defined as h = w - v ,  its horizontally 
averaged value being provided by the expression 

Re = CW/u (2.5) 

E = 2[w+a-2(azf;a, w-ta;, w), (2.6) 

where 5 is obviously zero in the absence of vertical vorticity 
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3. Structure and stability of the steady solutions 
The system (2.2) has two different families of steady solutions, as can be seen from 

figure 1, where the Nusselt number versus the Rayleigh number for every computed 
solution and for a Prandtl number u = 0.025 has been plotted. The first family, 
defined by the condition 6 = 0, has been plotted as a dot-dashed line. It exists for the 
whole range of parameters, whereas a second family of steady solutions, a dashed 
line, defined by the condition 6 + 0, branches at a supercritical Rayleigh number 
R, = 723. 

Finally, the 6 8 0 family of solutions becomes unstable through a Hopf bifurcation 
at a Rayleigh number R, = 882, plotted as an open circle. I n  figure 1 we have also 
included as asterisks, the averaged Nusselt numbers for every time-dependent 
solution computed. As for the rigid boundary case (see Paper I), the second family 
of steady solutions is highly inefficient for transporting heat, the only difference 
between the free and rigid boundary case being that in the former the bifurcation is 
supercritical throughout the explored range, (T = 10-4-10, while in the latter it is 
subcritical. That range of parameters also includes a chaotic region, indicated as a 
thick line on the Rayleigh-number axis. 

3.1. On the zero-Prandtl-number limit 
A remarkable property of system (2.2) and (2.3) is the presence of an asymptotic limit 
for small U-values. I n  figure 2 the Rayleigh numbers R, and R, introduced above, 
together with the frequency w for the Hopf bifurcation, scaled as w / a  (i.e. measured 
in terms of the viscous timescale), have been plotted as a function of u. Each of these 
values shows an asymptotic limit for u 4 1,  with R, = 720, R, = 874.5 and w / a  = 
7.02 being their asymptotic values. A similar behaviour, not displayed in the figure, 
can be observed for the amplitudes of the velocity field a t  the bifurcation points as 
measured by its Reynolds numbers. 

To explain the existence of such a small u-limit we must rescale the variables in 
(2.2) as aT = u-l a,, @ = CW/u ,  g = CE/u, and e" = CB/u. With that definition T is the 
viscous timescale and @(z, 7 )  is the local Reynolds number (please note the C-factor, 
not included in Paper I). At leading order in (T, for (T Q 1 ,  (2.2) becomes 

(a, - v2) vW = -Ra28"- ( maz vzW+ 2 a, WV~IV+ 3[a, [), (3.la) 

( 3 . l b )  

0 = w+v2e", ( 3 . 1 ~ )  

where ( 2 . 2 4  has been integrated to a, T = - 1.  
System (3.1) approximates (2.2) only up to w, <, e" and a, of order one. So we can 

term that system a low-Reynolds-number flow, or the slow limit or, even better, the 
small-PQclet-number limit, with the PBclet number defined as Pe = uRe (i.e. Pe = 
CW),  usually taken to be a measure of the fraction of advected heat in the total flux. 
I n  fact, to  leading order we have N -  1 x 0. That limit had been examined by Gough, 
Spiegel & Toomre (1975) for the time-independent case and was identified in their 
paper as the Ru Q 1 limit, with N-1 G O(R2a2), in agreement with our ap- 
proximation - see $4.1. System (3.1) has been integrated in order to show its range 
of validity and the results will be displayed below, but we can anticipate that i t  is 
a good approximation of (2.2) for a range of values of R. 

(aT--v2) [ = - (@a, [-[a, R), 
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4. Time-dependent solutions 
The systems (2.2) and (3.1) with boundary conditions (2.3) have been time- 

marched for Rayleigh numbers larger than R,, the Hopf bifurcation point (see the 
Appendix for details on the numerical schemes). As a default value w = 0.025 will be 
taken, for this is the Prandtl number for mercury and i t  is a value occurring well into 
the asymptotic region, as can be seen from figure 2. However, in order to give some 
idea of the kinds of solution obtained, in figure 3 kinetic energy, E,, has been plotted, 
see $4.1 below, scaled as E,C2a-*, for the steady and time-dependent solutions of 
both systems, much as in figure 1, but now including solutions for several a-values 
in the asymptotic region. The choice of E, instead of N -  1 has been dictated by the 
fact that the latter is meaningless in (3.1). 

FIQURE 1. Pu’usselt number-versus Rayleigh number for LT = 0.025 and a = 2.22. Dashed and dot- 
dashed lines correspond to [ + 0 and [ = 0 steady solutions, respectively. Periodic solutions are 
denoted by an asterisk (*). A thick line in the Rayleigh-number axis delimites the range 1070 < 
R < 1140 where we have found chaotic solutions. 

FIQURE 1. Pu’usselt number-versus Rayleigh number for LT = 0.025 and a = 2.22. Dashed and dot- 
dashed lines correspond to [ + 0 and [ = 0 steady solutions, respectively. Periodic solutions are 
denoted by an asterisk (*). A thick line in the Rayleigh-number axis delimites the range 1070 < 
R < 1140 where we have found chaotic solutions. 
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FlauRE 3. Kinetic energy, scaled as E,C2a-2, versus Rayleigh number for the steady solutions 
6 = 0 (dot-dashed line) and 5 =+ 0 (dotted line) of (3.1), and the periodic solutions of both (3.1) (solid 
line) and (2.2), the latter for the values u = 0.01 (O), CT = 0.025 (% and u = 0.04 (A).  In  the range 
of values R, < R < 1300 all time-dependent solutions merge. 

In  figure 3 we have plotted as a continuous line the time averages of E,  for the 
solutions of (3.1), and with circles, asterisks and triangles the solutions of (2.2) for 
g = 0.01, 0.025, 0.04 respectively. We can identify two different sections plus a 
transition region. In the range of values R, < R < 1300 all branches merge. It is in 
that region where figure 1 shows a plateau for N -  1 ,  with the fluxes being almost 
conductive, N -  1 = O(10-3). Solutions in that section display small PBclet numbers. 
For R > 2500 the kinetic energy, rather like the Nusselt number, becomes 
significantly larger as the Rayleigh number increases, although the curve for the 
Nusselt number flattens, with values going well below those for the = 0 steady 
solutions. This is the intermediate PBclet-number regime. 

Solutions of (3.1) have been found to be consistent with those of (2.2) for Rayleigh 
numbers in the small-PBclet-number regime, but outside that range differences 
increase very fast. To be precise, in that range shapes and periods for solutions of 
(2.2) and (3.1) are in perfect agreement if the corresponding Rayleigh numbers are 
shifted by a few percentage points, with the result that if solutions of both systems 
are plotted in figure 3 they become intermingled. 

Outside the small-P8clet-number regime the approximation leading to (3.1) breaks 
down. There, and for small Prandtl numbers, W N vPfl and s" - C T - ~  with n and m 
close to one - for a more precise discussion on n and m values, see below. It is worth 
mentioning here that Gough et al. (1975) and Toomre, Gough & Spiegel (1977) also 
showed the existence of two different asymptotic regimes, which they called the 
small and large Ra limits, associated with small and large P6clet numbers although 
their results were for steady = 0 solutions and the detailed phenomenology is 
different. Both regimes were also found in Paper I for rigid boundaries, as can be seen 
from figure 14 in that paper. 

4.1. Some relevant features of the time-dependent solutions 
As explained in $1, we have found a bifurcation to chaos induced by a symmetry 
invariance of the master system (2.2) and (2.3). There are in fact two such 
symmetries, 
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(i) skew-symmetry with respect to the midplane for {W, 8, Q: 

{ + W(2, t ) ,  + 8(z ,  t ) ,  + T(2, t ) }  -+ { - W( - 2, t + t o ) ,  - 8( - 2, t + to ) ,  - T( - 2, t + to) } ,  

+ &,t) + + 5( - z ,  t + t o ) ,  

(ii) symmetry with respect to reversals in [: 

{ + W(2,  t ) ,  + B ( Z ,  t ) ,  + qz, t ) }  + { + W(2,  t + t o ) ,  + 8(z,  t + to ) ,  + q z ,  t + t o ) } ,  

+&, 0-t  --&, t+t,), 

where to is a time-lag constant. For fixed to the previous set of symmetries replicates 
each solution four times. If there exists a replica identical to its original (i.e. the 
solution is invariant with respect to  a symmetry) the solution will be said to be 
symmetrical. Also, for a periodic solution with to + 0 we obtain X ( z ,  t + 2t0) = X ( z ,  t )  
for every variable, with the result that the fundamental period is t = 2t0, even if the 
period is t = to for some variables. It will be shown below that these symmetric 
solutions grow from the reconnection of two t = to asymmetric periodic solutions. 

Small-Ptkc2et-number regime 

As a typical example of the small-PBclet-number regime we have chosen the 
solution obtained for R = lo3, u = 0.025. I ts  period in thermal unit times is t = 64, 
and the thermal flux is given by N -  1 = 1.6 x corresponding to an almost 
conductive regime. I n  order to describe its dynamics, in figure 4 are depicted the 
Reynolds number in the middle of the layer, the horizontally averaged helicity, the 
total kinetic energy E,, together with the fraction of energy associated with the 
vertical vorticity E,, and the phase #, to be defined below. The energies have been 
defined as 

ga-'[(a, W ) z  + 57 + W }  dz, 

The value of the PBclet number, Pe = VRe, for the periodic solution displayed in the 
figure, and for the maximum velocity amplitude during a cycle, is Pe = 0.14. The 
corresponding maximum Reynolds number is Re = 5.7.  The reader will notice that 
both Re and Pe are measured using the same lengthscale, which need not be the only 
choice for a small-u regime. 

From the two upper curves in figure 4 we see that helicity keeps up with the 
Reynolds number though with a factor of ten difference in amplitude, in spite of 
the period for t(0, t )  being half that of W(0, t ) ,  therefore reflecting the dominance of 
a, [ ( O ,  t )  in h(see (2.6)). Concerning the energies, we can see in figure 4 the shift between 
the maxima of E,  and E,, reflecting a periodic energy transfer from W to  6 ,  with the 
ratio q between both maxima taking the value q = 0.356. 

Next, the phase-lag, #( t ) ,  between W(z, t )  and B(z ,  t )  will be introduced : 

J: WB dz 

[ 1:; W dz Jy: O2 dz]l 

For the solution displayed, the phase takes the value 

9(t) = 1 .  

= 1 throughout the entire 
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FIGURE 4. Time sequences corresponding to the case R = lo3, u = 0.025 and a = 2.22. The top 
curve shows the Reynolds number, Re = CW/o,  and below is the horizontally averaged helicity 5, 
both evaluated at z = 0. The following two curves display the total kinetic energy E,  together with 
the fraction of energy associated with the vertical vorticity E,. The ratio q = ( E , ) / ( E , )  is q = 
0.356, and the period in thermal units is t = 64. The bottom figure shows the phase-lag 4 -see the 
text. 

period except, perhaps, during a very short time interval, with its value decreasing 
suddenly, then regaining its original value immediately, thus appearing as a very 
thin and short spike, possibly of numerical origin. Therefore, in the small-P6clet- 
number regime, velocity and temperature are cohere@. This is a consequence of the 
fact than W and 0 are linearly related by I? = -V20 (see (3.1c)), together with a.n 
almost sinusoidal z-dependence. 

Intermediate-Piclet-number regime 
As a specific example of the intermediate-P6clet-number regime we have chosen 

the solution obtained for R = 5 x lo3, CT = 0.025. The maximum value for the PBclet 
number is now Pe = 2.3, which we take as an indication of an intermediate-PQclet- 
number regime. The maximum Reynolds number value is Re = 92, more than an 
order of magnitude larger than for the previous case, the thermal flux now being 
N -  1 = 0.287, with conduction still showing the largest contribution. The period in 
thermal unit times is t = 0.46, more than a hundred times smaller than the one shown 
previously. 

As in the previous case, displayed in figure 5 are the Reynolds number, Re, 
measured a t  the centre of the layer, along with the averaged helicity, h, and the total 
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FIQURE 5. As figure 4, but for the case R = 5 x lo3, u = 0.025 and a = 2.22. The ratio q is now 
q = 0.86 and the period is t = 0.46. 

kinetic energy, E,, together with the kinetic energy associated with the vertical 
vorticity &,. Now the most relevant result is the large contribution of E, to the total 
energy E,, with the ratio between both maxima being q = 0.86, a very large fraction 
if we realize that most of the kinetic energy is stored permanently in the vertical 
vorticity field. 

Also been displayed in figure 5 is the phase-lag $ i t ) ,  which looks like a comb, with 
$ jumping periodically from $ = + 1 to $ = - 1. For that solution the comb tooth 
thickness is, approximately, 25% of the whole period, giving an average value - 0.5. The change in sign for $ a t  each cycle corresponds to a change in sign for 
the buoyancy work ( W e ) ,  the brackets denoting spatial average. Therefore, that 
solution consists of a periodic sequence of buoyancy pushes and buoyancy brakes. In 
contrast to that, for the solutions of (3.1) ( W e )  = (IV8(2) is positively defined all 
along the cycle, as is $ ( t ) .  It is because of that absence of braking that amplitudes 
for the solutions of (3.1), as measured by the local Reynolds number @, grow much 
larger than the corresponding ones for (2.2). 

In order to obtain more detailed information about phases and heat flux efficiency 
we have computed the exponents in @ - u - ~  and e" - g-m. The precision obtained is 
not very satisfactory because of the high spatial resolution required, and also because 
the system goes to chaos through a quasi-periodic regime the description of which 
falls outside our scope. For the record, for R = lo4 and u = lop3, and from the 
steepness of the curve of maximum values of @ and e" against U ,  the values n = 0.86 



Vertical vorticity in low-Prandtl-number thermal convection 589 

and m = 0.94 have been obtained, with both these figures still increasing slightly as 
r~ decreases. For the time average of the Nusselt number the limit N -  1 - u0.41 has 
been obtained, and from this limit the phase average $av can be estimated. By 
writing N -  1 - q5av WB - q5av uz-n-m we can estimate q5av - I T O . ~ ~ ,  to be compared 
with the expression for the small-P8clet-number regime, where n = m = 0, q5av = 1 
(see figure 4) and, therefore, N -  1 - d. 

4.2. Qualitative description of a sequence to chaos 
In the small-P8clet-number regime we have found a cascade of bifurcations to chaos 
and subsequent relaminarization. Such a sequence has been described in the { W ( 0 ,  t ) ,  
g(O,t)} phase-map projection with no reference to the variable B(0,t) for, as is 
discussed above, 6 and W are in phase. Figure 6 shows a sequence of solutions 
showing the most relevant steps in the hierarchy of bifurcations. Time dependence 
begins with a Hopf bifurcation and, as a consequence, Wand E oscillate with the same 
period. If the Rayleigh number is increased the system goes through reconnection of 
an orbit with its symmetrical partner, to a symmetric orbit. This is clearly an 
homoclinic explosion with the saddle point located at the origin. Then the symmetry 
is broken and a pair of asymmetric solutions are formed, though only one is shown 
in the figure. This is a pitchfork bifurcation wit)h the symmetric solution losing 
stability in favour of the two asymmetric ones. Later on, the asymmetric solutions 
reconnect again to build a new symmetric solution with its period doubled, and the 
process is repeated again and again until chaos is reached. If the Rayleigh number 
is increased beyond that chaotic region a relaminarization process occurs following 
a similar sequence of events but now working backwards. This scenario is similar to 
the one described by Kuramoto & Koga (1982) for the Ginzburg-Landau equation 
(see also Kuramoto 1984 for further discussion). Ameodo, Coullet & Tresser (1981) 
have also examined a modified Lorenz system displaying a similar scenario. 

At first sight the cascading process described in figure 6 might seem to be one more 
example of a typical subharmonic period-doubling cascade (Feigenbaum 1978). But 
it is not. Most period-doubling cascades are induced by local instabilities. Orbits lose 
stability because the dominant Lyapounov multiplier goes through the value 
A = - 1, so they split up. If solutions are symmetric, period doubling requires, 
generically, a breaking of symmetry before the onset of the cascade (Swift & 
Wiesenfeld 1984). The main ingredients for the subharmonic cascade in figure 6 are 
totally different, as period doubling is associated with a homoclinic explosion, not 
with a continuous growing of the Lyapounov multipliers. Technically, a homoclinic 
explosion concerns the global structure of the flow, while classical period-doubling 
cascades involve only its local structure (see, for instance, Guckenheimer & Holmes 
1983), so we shall call the present scenario a global subharmonic period-doubling 
cascade. 

In  order to analyse the cascade of subharmonic period doublings we present in 
figure 7 a sequence of Fourier spectra for W(0, t )  and g(0, t )  corresponding to R = 
1065, 1066, 1067. We have called a solution S ,  or A: depending on whether it is 
symmetrical or asymmetrical, with n or (n, m) meaning the number of loops in each 
upper quarter of the g 2)s. W phase-map projection. With that notation the sequences 
in figures 6 and 7 read, respectively, A!, S,, A:, S,, A:, S,, etc., and S,, A:, S,. 

First, we should notice that W doubles its period from A: to S,, while does so 
from S, to A t  and, also, that (-spectra display peaks for every integer multiple of the 
fundamental frequency, while W-spectra do so only for A:, but not for S ,  solutions, 
where only odd multiples of the fundamental frequency are present. Therefore, a 
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m m 

FIGURE 6. Phase-map projections for solutions of (2.2) with u = 0.025 and a = 2.22. We have 
plotted Re, = C [ / u  versus Re = CWju,  both evaluated at z = 0. The minimum and maximum 
values in the plots are 0 < Re, < 21 and -8  < Re < 8 in every plot. Shown are: (a) R = 930 [A!] ,  
( b )  R = 940 [S,], (c) R = 1050 {A:],  ( d )  R = 1054 [S,], (e) R = 1061 [A:], (f) R = 1065 [S,], (9)  R = 
1100 [chaos], (h) R = 1145 [S,], (i) R = 1147 [A:], ( j )  R = 1155 [S,], (k) R = 1175 [A:], (I) R = 1300 
[#*I. 

sequence of (-spectra cannot be differentiated from a local subharmonic period- 
doubling cascade, while a sequence of W-spectra can. This is an important 
observation as, hitherto, most cascades have been identified from their Nusselt- 
number spectra, which are qualitatively similar to [-spectra, and not from their 
Reynolds-number spectra. 

Finally, in order to differentiate both types of cascades, the Poincare' map for the 
chaotic solution R = 1100 is depicted in figure 8. We chose to plot values of Wk+, us. 
w k  for [ = 14.3. The non-local nature of the chaotic process can be seen from that 
plot. The steepness of the curve interpolating between the points of the Poincar6 map 
being larger than one, any nth-order return map will be unstable everywhere. 
However, because of the symmetry of the return map, the representative point in 
phase space cannot escape. In contrast, most local period-doubling cascades are 
associated with quadratic return maps. A return map similar to the one shown in 
figure 8 has been discussed in detail by Sparrow (1982) and Guckenheimer & Holmes 
(1983) for the Lorenz attractor. 

Description of a chaotic solution 
As a typical example of chaotic solution we have taken R = 1100, v = 0.025. Its 

phase and return maps have been included, respectively, in figures 6(g) and 8. In 
figure 9 we have plotted the time sequences for the Reynolds and Nusselt numbers 
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FIQURE 7. Fourier spectra for the time sequences of Re = C W / u  and Re,, = C[/a at z = 0, 
corresponding to the Rayleigh-number values R = 1065 [SJ, R = 1066 [A:] and R = 1067 [S,]. 
Notice that Re doubles period from A: to  S,  while Re does so from S, to A:. We have not displayed 
the Nusselt-number spectra because they are qualitatively similar to the Re, spectra. To prevent 
scaling problems, we have not plotted the continuous component in the Re, spectra. In  the plot we 
have denoted the fundamental frequency by f, which corresponds, approximately, to the Hopf 
bifurcation frequency. 

together with their Fourier spectra. It is a chaotic flow for it shows broad-bands, 
which is usually taken as an operational definition of stochastic or chaotic behaviour 
(Landford 1982). However, as mentioned by Landford, convective systems usually 
show, for the stochastic component, a small amplitude superimposed onto a much 
larger periodic component, and this is true for the Nusselt number but not for the 
Reynolds number. 
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FIGURE 8. Poincare return map Re,,, us. Re, for the chaotic solution R = 1100, u = 
a = 2.22. We have taken as a surface of section Re, = 14.3 in the plot of figure 

and 

FIGURE 9. Time sequences for the Reynolds and Nusselt numbers, together with their Fourier 
spectra, for the chaotic solution R = 1100, B = 0.025 and a = 2.22 (figure 6s) .  The unit for the 
frequency axis is f = 1/5000. The reader may notice a relative shift between the dominant peaks 
of both spectra. 
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The qualitative differences between the spectra of Re and N are even more 
substantial, as there is no clear relationship between their dominant frequencies (i.e. 
the peaks with larger amplitudes). This is not an accidental result but is a persistent 
feature of every chaotic solution computed. In our opinion such a difference results 
from the fact that both manifestations of chaos are accumulation points of two 
different sequences, as suggested by figure 7, with the Nusselt number behaving as 
E.  The scenario for the Nusselt number looks like the one expected for a quadratic 
map while that for W does not. Therefore, depending on which variable is being 
measured, two different types of chaos can be observed: an almost periodic, poorly 
chaotic, thermal process, or a strongly chaotic hydrodynamical flow. 

4.3. On a low-order system 
In  previous sections some indications have been found of a lack of z-structure in the 
small-P8clet-number regime, as can be seen, for instance, from the high degree of 
coherence between Wand 8 mentioned in $4.1. Therefore, to help in the diagnosis of 
the period-doubling cascade, a low-order system for (3.1) has been devised. The 
following truncation has been assumed : 

W = ;n(n2 + u2)-l (xl sin KZ + x2 sin ~ K Z ) ,  

6 = ;K(K~ + a2)-t (2, + x4 cos KZ + x5 cos Z K Z ) ,  

where, to make the expansion more obvious, we have shifted the origin for the z- 
coordinate to the bottom of the layer. Rescaling the time as 7' = (n2+a2)7  and 
introducing the following definitions : 

r = R a 2 / ( n 2 + a 2 ) 3 - l ,  s = q 3 ( r + l ) - l ,  

p = a2/(7c2+a2), q = (7c2+a2)/(4n2+a2) 

the system (3.1) reduces to 

x2 = q-'sx2 - qx; - qx: - 4qx, x5, 

x, = - px, + gx4 XI + $x5 2, , 
x4 = -x4+x,2,+x*x2+~x,x1, 

) 

{+Xl, +x2, +x,, +xp, +x5}+{-x1, +x2, +x3, -24, +X5h 

{+XI, +x2, +z3, +x4, + ~ 5 } + { + ~ 1 ,  + ~ 2 ,  - 5 3 ,  -x4, -x&, 

with all the dynamics described before being associated with the first symmetry. 
However, by imposing x5 = 0 we obtain a fourth-order system with the same set of 

In the present case p = q = 5. The steady bifurcation to 6 $: 0 takes place at  r = 0.1, 
the Hopf bifurcation at r = 0.33 and chaos appears at T = 0.59. 

If the plane x1,x3 is taken for the phase-map projection, a sequence is obtained 
that can hardly be differentiated from that displayed in figure 6.  Taking the plane 
xl, xp as a projection, the sequence is very similar to that obtained by Kuramoto & 
Koga (1982), Kuramoto (1984) for the Ginzburg-Landau equation. Such a 
coincidence might not be surprising, as all of them share the same type of 
symmetries. These symmetries are in the present case 
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symmetries but showing only the head and tail of the period-doubling cascade, and 
certainly not chaos, suggesting that something other than symmetry is required for 
chaos. 

System (4.1) has been used to explore the scenario in more detail and, in particular, 
to estimate the accumulation point p, for the period-doubling sequence, with y n  
defined as 

r n + l - r n  

rn-rn-1  
Pn = 9 

where rn is the bifurcation value for the solution S,, and N = 2n-1. We have obtained 
,u4 = 0.354.. . , t o  be compared with the universal value for quadratic maps p, = 
0.214.. . , showing that global cascades do not share in that universality. 

4.4. On the conservation of angular momentum 

The spontaneous growth of a vertical vorticity component can result in a sudden 
increase in the vertical component of the angular momentum of the flow even if, as 
assumed here, the spatial average of the vertical vorticity remains zero throughout 
the period. There is nothing against first principles in that result if at least one of the 
boundaries of the volume is not stress-free, but it certainly challenges intuition. The 
shape assumed in (2.1) could be questioned on that basis. For instance, iff(x, y) is a 
hexagonal planform, the volume average of the vertical component L, of the angular 
momentum is 

(L,)  = 6 ~ a - z r r ~ ~ 5 ( 2 , t ) d z ,  

and taking for $ a solution of (2.2) (L,) =!= 0. 
It has been shown before that our master system is invariant with respect to 

vorticity reversals, c+ - 5, but the corresponding solutions are time-lagged. In  order 
to build a solution showing that symmetry throughout the time and, therefore, 
keeping a zero mean vertical angular momentum, (A,) = 0, the original expansion 
(2.1) must be extended.. The most natural way to do so is to take a system made up 
of two hexagonal planforms, one up and one down. It will be shown below how that 
system displays most of the one-mode dynamics. 

Let (2.1) be changed to 

21, = Cf&, Y) K(z, t ) ,  

w, = Zf&, Y) m, t ) ,  

T = T(z, t )  + Zf&, y) B,(z, t )  (i = 1,2), 

where fl(x,y) is an hexagonal planform, f,(x,y) = -fl(x+xo, -y-yo) and fi(xo, 
yo) = 0. Under such conditions the equations to be solved are readily established. 
Equations (2.2a-c) are duplicated for the second mode, with C, = -C, whereas 
( 2 . 2 4  includes contributions from both modes. Therefore both modes interact only 
through the mean temperature field T .  

In the small-P8clet-number regime, 3, T = - I and both modes uncouple, so each 
one behaves as in the one-hexagon case. If the initial conditions are properly set, then 
Xl(z, t )  = X,( - z, t) for each of the variables W ,  19 and 5. As a consequence (L,)  = 0 
at any later time. In  the intermediate-P6clet-number regime such a spatially 
symmetric solution still exists, though it need not be unique and could well be 
unstable. We have compared several such solutions and their dynamics is roughly 
similar to that described in this paper. The only difference to be reported is a factor 
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of two in the value of N -  1, otherwise a small quantity. Thus it can be concluded 
that the whole dynamics need not be dependent on the conservation of the vertical 
component of the angular momentum. 

5. Conclusions 
In  the present paper we have examined the dynamics of the vertical vorticity field 

in the framework of a highly truncated model of thermal convection. The model is 
intended for situations where straight rolls are not the dominant structures and, in 
particular, for low-Prandtl-number flows, where stable rolls might not even exist. 

Truncated models can be suspected of being mathematical artifacts showing 
completely non-physical dynamics. This could certainly be the case for the present 
model. But as bifurcation points and timescales have been found in Paper I to be in 
reasonable agreement with experiments, we believe the system describes a real 
process, at least in the neighbourhood of this bifurcation, as suggested by the normal 
form theorem. It is on that region, i.e. in the low-PBclet-number regime, that we have 
concentrated our efforts and where the most exciting dynamics has been found. 

One of the most striking results is the existence of a regular zero-Prandtl-number 
limit for mildly supercritical regimes. In  that limit, advected heat is negligible, so i t  
has been termed the small-PBclet-number regime, but the hydrodynamical activity 
is still large, as can be seen from the Reynolds number. In  that regime chaos has been 
found, with the whole scenario being induced by a sequence of reconnections and 
symmetry breakings. It is a cascade of subharmonic period-doublings, but the whole 
scenario is different from the one expected for quadratic maps. In  order to develop 
a deeper understanding of the model, a fifth-order system displaying exactly the 
same route to  chaos has been derived. 

Beyond the small-PBclet-number regime there is a family of solutions somewhat 
more efficient in advecting heat and showing larger Reynolds numbers. Their 
distinguishing feature is the reduced coherence between temperature and velocity. In  
contrast to the previously quoted solutions, the buoyancy work pushes and brakes 
the motion in every cycle to compensate for the reduced viscous damping. It is that  
reduced damping that might explain the large fraction of kinetic energy stored in the 
horizontal motion, in the vertical vorticity field, to be precise. A fraction that reaches 
values of 80 ?’” or 90 % of the total kinetic energy. Such a large anisotropy is hard to  
believe, although it may be taken as a warning against some parameterization 
procedures. But truncation can be blamed for this unphysical behaviour, as it breaks 
the cascade towards the small scales and shortcuts the coupling between vertical 
vorticity and buoyancy. 

The present work has been supported by the Direccion General de Investigacion 
Cientifica y Tecnica (DGICYT) under grants 1169/84 and PS87-0107. 

Appendix. The numerical scheme 
The system to be integrated shows a complicated bifurcation pattern that goes 

through a chaotic region. I n  addition, the system is stiff, with timescales being in a 
ratio of order lop2 or even smaller. With such constraints three different schemes 
have been tested, all implicit in time. The numerical error has been estimated by 
comparing the periods and orbital shapes of periodic solutions obtained from two or 
three of these different methods. In  each of the three methods the error has been 
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reduced as much as necessary, though the price paid in terms of CPU time and 
storage requirements has sometimes been very high. The error in the periods of 
periodic orbits has been taken as a test of the accuracy of a given method, because 
we know from the Floquet theory that any stable periodic solution is marginally 
stable in the direction tangent to its orbit in phase space. Therefore for periodic 
solutions the greatest sensitivity to error must be expected in that direction. 

The first technique that we used was the implicit finite-differences scheme centred 
in space and advanced in time that was described in Paper I .  It has been found 
accurate and stable but very slow, so i t  has only been used as a test. As a second 
technique a method of lines has been chosen where the space derivatives have been 
written in terms of centred finite differences (Walter 1970). The resulting system of 
ordinary differential equations can be written formally as 

where { X I , .  . . ,X,}, with n = 4N, are the values taken by the variables W ,  6 ,  8, and 
at the N spatial mesh points and a dot means a time derivative. The system (A 1) 

has been solved using a Gear method, since i t  is implicit and particularly well suited 
for stiff systems (Gear 1971). The number N of mesh points for the space coordinate 
ranged between 70 and 100. The method has been found stable, accurate and much 
faster than the first one. However, CPU time increases substantially with increasing 
accuracy. 

The third method tried, and the fastest one, was a Galerkin expansion for the z- 
coordinate in terms of trigonometric functions. The system of differential equations 
obtained can be written as (A I), but now (XI, . . . ,X,} are the n = 4N+ 1 amplitudes 
of the Fourier series for the variables W ,  6 ,  8, and T. Now, as in the previous 
technique, the resulting time-dependent system of ordinary differential equations 
has been solved using a Gear method and for N = 4-24. This method has been found 
to be faster than the previous one. CPU time for a smooth, well-behaved periodic 
solution has been reduced by a factor of fifty with respect to the method of lines. 
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